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Chaotic optical communications were originally pro-
posed to provide high-level physical layer security for optical
communications. Limited by the difficulty of chaos synchro-
nization, there has been little experimental demonstration
of high-speed chaotic optical communications, and point to
multipoint chaotic optical networking is hard to implement.
Here, we propose a method to overcome the current limita-
tions. By using a deep-learning-based scheme to learn the
complex nonlinear model of the chaotic transmitter, wide-
band chaos synchronization can be realized in the digital
domain. Therefore, the chaotic receiver can be significantly
simplified while still guaranteeing security. A successful
transmission of 32 Gb/s messages hidden in a wideband cha-
otic optical carrier was experimentally demonstrated over
a 20 km fiber link. We believe the proposed deep-learning-
based chaos synchronization method will enable a new
direction for further development of high-speed chaotic
optical communication systems and networks. © 2019
Optical Society of America

https://doi.org/10.1364/OL.44.005776

Since chaos synchronization was first proposed in 1990 [1],
chaos has been widely studied in optical communications as
a powerful hardware encryption method. In chaotic optical
communication systems, the optical chaos is generated by the
nonlinearity of optical devices, which can be either lasers [2]
or modulators [2–9]. The dynamics for the modulator and the
laser with feedback loop can be dated from the Ikeda ring cavity
[10], and both of them have similar dynamic characterization.
By using matched devices, chaotic optical communications
can be realized. There have been numerous studies into chaotic
optical communications, but most of them have been simula-
tions, with only a few being experiments in high-speed chaotic
optical communication [2,4,6,7] since experimental imple-
mentations of chaos synchronization are quite challenging,
especially when the bandwidth is large, and the chaotic trans-
mitter structure is complex. Many complex chaotic transmitter
structures have been proposed to improve the level of security
[11–13], but no chaos synchronization has been experimentally
demonstrated for these structures owing to their complexity.

Besides, up to date, no experimental demonstration of point
to multipoint chaos synchronization has been reported, since
selecting multiple well-matched transmitters and receivers
will meet much more challenge. Therefore, for applications of
chaotic optical communications with the features of high speed,
enhanced complexity, and the capability of point to multipoint
networking, chaos synchronization is the bottleneck to be
addressed.

Recently, deep learning has also been widely used in
optical communications for performance monitoring and
linear/nonlinear equalization [9,14]. Back to 2007, an artificial
neural network (ANN) with a single hidden layer was used to
predict a chaotic time series [15]. As the message-to-chaos ratio
is as low as 3% in Ref. [15], which cannot change the loop non-
linearity, it can be approximated as the chaos generation without
message involvement, and the nonlinear model was simple and
easy to learn. When the message-to-chaos ratio is big enough,
the message as a random variable will change the parameter of
nonlinear function, which will change the nonlinear dynamic
of chaos. Therefore, whether deep learning can be used for
chaos synchronization in physical high-speed chaotic optical
communication systems is still an open question.

In this Letter, we propose to use deep learning to address
the chaos synchronization challenge. We have experimen-
tally demonstrated 32 Gb/s chaotic optical communications
over a 20 km fiber link by using deep-learning-based chaos
synchronization. After authorized training inside the chaotic
transmitter, the trained ANN can be used for chaos synchroniza-
tion and decryption. The system performance with different
message-to-chaos ratios and bit rates was studied for back-to-
back (BtB) and transmission over 20 km fiber links. We also
analyzed the security of the system against deep-learning-based
attacks in detail. By utilizing the learned model in different
receivers, chaos synchronization has been greatly simplified,
and point to multipoint chaotic optical networking can also be
realized. Besides, compared with a chaotic ANN used on the
transmitter side [16], the physical chaotic system is more com-
plex and with a higher bandwidth. Therefore, we believe that the
proposed deep-learning-based chaos synchronization system
opens up a new avenue for chaotic optical communications.
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Fig. 1. Experiment setup. LD, laser diode; MZM, Mach–Zehnder
modulator; VOA, variable optical attenuator; OC, optical coupler;
DL, delay line; PD, photodiode; AMP, broadband radio frequency
amplifier; EDFA, erbium-doped fiber amplifier; DCF, dispersion
compensation fiber; ADC, analogue-to-digital conversion; FFE,
feedforward equalizer; ANN, artificial neural network.

The experimental setup is shown in Fig. 1. The output light
of a laser diode (LD1) with a power of 13 dBm is injected into a
Mach–Zehnder modulator (MZM1) with a 3 dB bandwidth of
10 GHz and a half-wave voltage of 3.8 V. And, MZM1 is driven
by an electrical amplifier (AMP1) with a 3 dB bandwidth of
30 kHz to 10 GHz and a peak-to-peak voltage of 10 V. The out-
put light of MZM1 is divided into two parts through an optical
coupler (OC1), where one part is used for training an ANN, and
the other part is mixed with the message from LD2 and MZM2
through OC2. MZM2 is driven by a quadrature amplitude
modulation-16 (16 QAM) message, which is generated by
an 80 GS/s arbitrary waveform generator. The mixture ratio
between message m(t) and chaos c (t) is adjusted by a variable
optical attenuator (VOA1). The light mixture that is the chaos-
masked message m(t)+ c (t) is divided into two parts, where
one part is used for secure transmission, and the other part is sent
back to the feedback loop for chaos generation. In this case, the
message also participates in the chaos generation process, and
thus improves the system complexity. After being delayed, the
mixed light is converted into an electric signal by photodiode
(PD1) with a 3 dB bandwidth of 10 GHz. VOA2 in the loop
is used to control the feedback strength. Before being sent into
the 20 km fiber link, the mixed light is amplified by an erbium-
doped fiber amplifier (EDFA), and VOA3 is used to control
the injection power into the fiber at 0 dBm. At the receiver side,
the mixed light is received by PD3 with a 3 dB bandwidth of
10 GHz, and then the light is converted into digital signals by an
analogue-to-digital converter (ADC). A 40-GS/s oscilloscope
(OSC) is employed for its ADC function. A feedforward equal-
izer (FFE) is used to equalize the fiber dispersion, which can be
expressed as m′(t)+ c ′(t), to the BtB case m(t)+ c (t) for the
following processing. The output of the FFE is split into two
parts, where one part is processed by a delay module whose delay
time 1T is matched with the value in the chaotic transmitter.
Following the delay module, a trained ANN module is used for
the chaos synchronization. The message m(t) can be decrypted
by the subtraction of the regenerated chaos of ANN c (t) and the
other output of the FFE module m(t)+ c (t).

The ANN used in our experiment is a fully connected neural
network, and the hyper parameters of ANN need to be tuned
carefully; different hyperparameter combinations of ANN need
to be tried to find the best performance. The hyperparameters of

ANN include the number of layers and the number of neurons
in each layer, and the ANN in our experiment consisted of one
input layer with 71 neurons, two hidden layers with 71 and 41
neurons, and one output layer with 1 neuron. In addition, the
hyperparameters of ANN need to be slightly tuned to achieve
the best performance in the experiment when the parame-
ters of the transmitter are changed. The activation function is
max(0, x ). The input of the ANN is the mixed message and
chaos after they have experienced the loop delay, which can
be expressed as m(t −1T)+ c (t −1T), corresponding to
the output waveform of the chaotic transmitter. The desired
output of the ANN is the chaotic waveform c (t) at the out-
put of PD2. The loss function is the mean square error. And
backpropagation (BP) algorithm is used to train the ANN.

For comparison, a traditional chaotic optical receiver is also
provided in Fig. 1. A dispersion compensation fiber (DCF) is
required to compensate the fiber dispersion before the chaos
synchronization. The loop delay time and the parameters of
the MZM, AMP, and PDs must be well-matched with those
in the chaotic transmitter for the chaos synchronization and
the decoding of the chaos-masked message. Compared with
the traditional chaotic optical receiver, the proposed deep-
learning-based chaotic receiver is significantly simplified, and
all the digital signal processing functions can be integrated into
a digital chip. All the deep-learning-based chaotic receivers
can achieve consistent synchronization performance for point
to multipoint networking, which is almost impossible to be
achieved by traditional hardware-based chaotic receivers. A
well-matched hardware depends on the fine screening com-
ponent, which cannot always be guaranteed. Except for the
simplicity, the main benefit of the deep-learning-based chaotic
receiver is the performance consistency, which is essential for
practical applications.

First, we present our study on the performance of the chaos
synchronization using the deep learning in the BtB case. The
chaotic time series collected from PD2 is shown in Fig. 2(a), and
the chaotic time series generated by the trained ANN is shown
in Fig. 2(b). The synchronization plot of the two time series is
shown in Fig. 2(c). The correlation coefficient is used to evaluate
the performance of the chaos synchronization; it is defined
as [17]

C =
〈(x [n] − 〈x [n]〉)(y [n] − 〈y [n]〉)〉√
〈[x [n] − 〈x [n]〉]2〉〈[y [n] − 〈y [n]〉]2〉

, (1)

where x [n] denotes the chaotic time series collected from
PD2, y [n] denotes the chaotic time series generated by the
ANN, and 〈·〉 denotes the average operation. The calculated
correlation coefficient C is as high as 97.57%, which is even
better than 96.44% of the well-matched chaotic receiver [4].
In previous work, for some well-selecting components, the
correlation coefficient may be as high as 99% [2], but this
perfect synchronization is very dependent on the component
manufacturing and, therefore, cannot always be guaranteed, as
discussed before. In this experiment, we cannot find matched
components to realize 10 GHz chaos synchronization with a
correlation coefficient higher than 97.57%, but we can realize
10 GHz chaos synchronization by ANN, which is much simpler
than the hardware-based synchronization. Therefore, the syn-
chronization performance for the traditional hardware-based
chaotic receiver is not demonstrated to avoid unfair comparison.
Besides, in the deep learning-based chaotic receiver FFE can be
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Fig. 2. Chaos synchronization and constellations of the origi-
nal, encrypted, and decrypted 16 QAM signal in a BtB situation.
(a) Chaotic time series collected from PD2 by the OSC. (b) Chaotic
time series generated by the ANN. (c) Chaotic synchronization plot of
the chaotic time series collected from PD2 and generated by the ANN.
(d) Constellation of the original 16 QAM signal. (e) Constellation of
the chaos-masked 16 QAM signal. (f ) Constellation of the 16 QAM
signal decrypted by the ANN.

used for dispersion compensation in the digital domain, which
also simplifies the fiber link. For the traditional hardware-based
synchronization method, DCF has to be used in the fiber link to
compensate the dispersion before synchronization.

After the chaos synchronization is realized by the trained
ANN, the 16 QAM message can be recovered by subtracting
the ANN-generated chaos from the chaos-masked message.
The constellation of the digital coherent demodulated 16 QAM
message is shown in Fig. 2(f ). Digital coherent demodulation is
also performed on the encrypted message for a fair comparison:
the constellation of that demodulated encrypted 16 QAM
message is shown in Fig. 2(e), and it can be seen that the constel-
lation is completely noisy. The decrypted 16 QAM message is
worse than the original one, as shown in Fig. 2(d), because the
synchronization error is converted into noise, which degrades
the signal-to-noise ratio.

We also studied the bit error rate (BER) performance with
different bit rates and different mask coefficients for the BtB
and 20 km fiber transmission cases. As shown in Fig. 3, the
mask coefficient is defined as the ratio of the peak-to-peak
values between the 16 QAM message and the chaotic wave-
form. For the 20 km fiber transmission case, a FFE module
with 21 taps is needed to compensate the fiber dispersion. Both
20 Gb/s and 32 Gb/s 16QAM messages masked by a 10 GHz
wide chaotic waveform were studied. The BER curves for the
encrypted message and the decrypted message in the BtB and
20 km fiber transmission cases for the 20 Gb/s 16 QAM message
are shown in Fig. 3(a). The BER of the encrypted message in
the BtB situation is higher than 1× 10−1, guaranteeing the
security. The green line represents the BER performance of
the decrypted message in the BtB situation, where the BER
decreases as the mask coefficient increases, and the BER is well
below 3.8× 10−3, which is the hard decision forward error cor-
rection threshold, indicating that the message can be effectively
extracted. The purple line shows the BER performance of the
decrypted message after 20 km fiber transmission. Compared

Fig. 3. BER performance. (a) BER performance of the encrypted
signal (red triangles), the decrypted signal (green squares) in the
BtB case, and the decrypted signal (purple circles) after 20 km fiber
transmission with different mask coefficients for a 20 Gb/s 16 QAM
signal. (b) BER performance of the encrypted signal (red triangles),
the decrypted signal (green squares) in the BtB case, and the decrypted
signal (purple circles) after 20 km fiber transmission with different
mask coefficients for a 32 Gb/s 16 QAM signal.

with the BER in the BtB case, the BER becomes worse because
the impairments in the 20 km fiber transmission cannot be com-
pletely compensated by the FFE module. When we increased
the bit rate of the 16 QAM message to 32 Gb/s [BER perform-
ance shown in Fig. 3(b)], the variation of the BER with the mask
coefficient is similar as for the case in Fig. 3(a). However, the
32 Gb/s 16 QAM message is more sensitive to the dispersion.
Therefore, the BER performance of the 32 Gb/s 16 QAM
message was worse than the BER performance of the 20 Gb/s
message, and a soft decision forward error correction, which is
associated with a higher cost, is needed for channel coding. Since
in intensity modulation direct-detection system dispersion is a
serious distortion factor, an FFE with 21 taps is not sufficient to
completely compensate the fiber dispersion, and increasing the
taps of FFE still cannot improve the performance, this results in
a discrepancy between the compensated waveform and the BtB
waveform. Therefore, the ANN trained on the BtB case is not
optimized for the transmission case, and the system perform-
ance will be degraded after fiber transmission, but it is not easy
to train ANN on the 20 km fiber case in experiment because
of the large time delay between the transmitter and receiver. If
optical coherent detection or DCF is used, the fiber dispersion
can be completely compensated, and the performance can be
improved.

We have demonstrated that an ANN can replace a tradi-
tional chaotic optical receiver for chaos synchronization and
decryption. We will then discuss if it is possible to use an ANN
for eavesdroppers to attack the chaos system. We consider
three well-known attacks: brute-force attack, free cypher text
attack, and plaintext attack. First of all, it is almost impossible
to brute-force the chaos system using the ANN since there
are infinite node combinations for an ANN and the param-
eter space for a given ANN is also infinite in principle. In this
work, the number of parameters in the ANN is 8106, and the
digital value range of each parameter is no limitation. Besides,
except for the parameters of the ANN, the time delay has to be
known for correct decryption as the traditional hardware cha-
otic receiver, which contributes additional key space if the time
delay signature can be concealed [11]. Therefore, we consider
the structure is safe against the ANN-based brute-force attack.
Then, we consider if it is possible to train the ANN using the
detected chaotic time series from the transmission line when
the message is turned off, the so-called free cypher text attack.
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Fig. 4. Synchronization performance using the ANN trained
without a message. (a) Chaotic synchronization plot of the chaotic
time series measured from the chaotic transmitter and predicted by the
ANN trained without a 16 QAM signal. (b) BER performance and
constellation of the 16 QAM signal using the ANN trained without a
message.

In Fig. 4, we prove that the trained ANN from the chaotic time
series without message involvement cannot be used to decrypt
the chaos-masked message, guaranteeing the safety against the
free cypher text attack. Figure 4(a) shows that the predicted
chaotic time series from the trained ANN can be well-matched
with the measured chaotic time series from the chaotic trans-
mitter. But using the trained ANN to crack the chaos-masked
message failed for all the different mixture ratios between the
message and the chaos, as shown in Fig. 4(b). In addition, we
tried to change the hyperparameters of ANN in experiment,
and the message still could not be decrypted. This is because the
nonlinear models of the chaotic transmitter with and without
message involvement are completely different. Note that the
small mask coefficient, corresponding to small mixture ratio
between the message and the chaos, will result in a security issue,
which is the case in Ref. [15]. In our experiment, the message
will significantly influence the chaos dynamic when the mask
coefficient is bigger than 0.8. Finally, we consider the plain-
text attack. In this case, the eavesdroppers may use the known
plaintext and the achieved chaos-masked message to train the
ANN. To correctly train the ANN, m(t) should be known, cor-
responding to the output waveform of the transmitter. However,
for different coding schemes, modulation formats, bit rates of
the data, and different modulation responses of the modulator,
the output waveform for a given plaintext could be completely
different, so only knowing the plaintext without knowing the
corresponding waveform is not sufficient to correctly train
the ANN. Therefore, the plaintext attack cannot work if the
attacker cannot physically access the transmitter. However,
according to more conventional attacks [18], more work needs
to be done for security enhancing in chaos communication.

In conclusion, by using deep learning to learn the complex
nonlinear model of a chaotic transmitter, wideband chaos
synchronization was realized; thanks to chaos synchronization
being realized in the digital domain, a digital equalizer rather
than an optical dispersion compensator can be used to com-

pensate the dispersion. Therefore, the chaotic receiver can be
simplified significantly. Secure transmissions of 20 Gb/s and
32 Gb/s 16 QAM messages over 20 km fiber have been exper-
imentally demonstrated. The BER performance in BtB and
20 km fiber transmission cases has been studied. The proposed
deep-learning-based chaos synchronization has the same level
of security as traditional synchronization schemes, but the
implementation difficulty is significantly reduced, which is
essential for practical applications. By embedding the trained
neural network into different digital chips, point to multipoint
chaotic optical networking can also be realized, and the method
can also be used in the chaos system based on lasers with optical
feedback. Therefore, we believe deep-learning-based chaos
synchronization can open up a new direction of chaotic optical
communications and may lead to deeper insight into other
chaos-based applications, such as chaos key distribution.
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